
Understanding the Mechanism behind Data Augmentation’s
Success on Image-based RL

David Klee
Khoury College of Computer Sciences

Northeastern University
Boston, MA 02115

dmklee@ccs.neu.edu

Robin Walters
Khoury College of Computer Sciences

Northeastern University
Boston, MA 02115

Robert Platt
Khoury College of Computer Sciences

Northeastern University
Boston, MA 02115

Abstract

Reinforcement learning for continuous control tasks is challenging with image observations, due to the representation
learning problem. A series of recent work has shown that augmenting the observations via random shifts during train-
ing significantly improves performance, even matching state-based methods. However, it is not well-understood why
augmentation is so beneficial; since the method uses a nearly-shift equivariant convolutional encoder, shifting the in-
put should have little impact on what features are learned. In this work, we investigate why random shifts are useful
augmentations for image-based RL and show that it increases both the shift-equivariance and shift-invariance of the
encoder. In other words, the visual features learned exhibit spatial continuity, which we show can be partially achieved
using dropout. We hypothesize that the spatial continuity of the visual encoding simplifies learning for the subsequent
linear layers in the actor-critic networks.
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1 Introduction

Solving continuous control tasks with reinforcement is challenging when using image observations. The reinforcement
learning loss is insufficient to solve the representation learning problem of encoding relevant information from the im-
ages. Many approaches [1, 2, 3, 4, 5] have added an auxiliary loss to encourage the encoder to form better representations.
Other works [6, 7, 8] have achieved good performance by applying data augmentation, in the form of random pixel shifts,
to the images during training. Data augmentation is an appealing technique for image-based RL due to its simplicity
and effectiveness.

While data augmentation may be useful, it is not clear why it works so well. Specifically, why do random shifts sig-
nificantly affect learning, given that the encoder is a nearly shift-equivariant convolutional network? To unpack this
question further, we must consider two facts about [7, 6]: (1) the entities are centered in the image observations (so there
is no benefit to generalizing to novel pixel translations); (2) the encoder used to process the image observations is made
of convolutional layers which are known to exhibit shift-equivariance.

In this work, we investigate the representations learned when using data augmentations for image-based RL. We find
that data-augmentation results in higher shift-equivariance in the convolutional layers compared to no augmentation.
Further, we show that data augmentation results in qualitatively more robust feature maps, which cannot be achieved
using traditional regularization techniques like dropout. This work is in progress, and we hope it will lead to insights
that can further improve the sample efficiency of image-based RL methods.

2 Related Work

Reinforcement Learning from Images Many papers have focused on overcoming the representation learning problem
for image-based RL. [1] proposes applying reconstruction loss to the convolutional encoder during training. CURL [2]
uses a contrastive objective as an auxiliary loss during training, generating positive keys using random crop augmenta-
tions. Stooke et al. [9] train the encoder offline using a contrastive loss, such that the encodings are similar for nearby
timesteps in a trajectory; they show that sub-pixel random shifts on the encoder’s output can boost RL performance.
Other works have applied auxiliary losses based on predictive information [3], forward modeling [4], and mutual infor-
mation between augmented states [5]. DrQ [7] proposes averaging q-value estimates over multiple data augmentations
during training, and claim that the augmentation serves as a regularizer to avoid overfitting. In concurrent work, RAD
[6] compares multiple forms of data augmentation and find that random translations achieve best performance; they
posit that augmentations result in more robust representations. [10] shows that excessive data-augmentation leads to
higher q-target variance and over-regularization.

Shift-Equivariance of Convolutional Networks It is well known that the weight sharing scheme of convolutional net-
works leads to shift-equivariance. Azulay and Weiss [11] highlight that downsampling operations (stride or pooling)
violate the classical sampling theorem and reduces shift-equivariance; performing data augmentation restores equivari-
ance only for samples nearby the training distribution. Zhang [12] proposes a method for anti-aliased downsampling in
convolutional networks, called BlurPool, that exhibits higher shift-equivariance. Cohen and Welling [13] generalize con-
volutional networks to exhibit the equivariance properties of arbitrary symmetry groups. To our knowledge, there is no
work describing a mechanism, other than downsampling, that affects shift-equivariance of convolutional architectures.

3 Experiments

We are interested in uncovering the mechanisms underlying the effectiveness of data-augmentation for image-based
RL. To narrow the scope of the investigation, we look at how modifications to the approach outlined in [6] affect the
performance and representations learned. In this section, we briefly describe the learning algorithm for continuous-
control, image-based RL, how to incorporate data augmentation during training, and how to quantitatively measure the
equivariance of the encoder.

3.1 Method

Figure 1: Encoder network for SAC

Traditional continuous-control reinforcement learning algorithms can be ap-
plied to image-based tasks using a convolutional encoder. It is common to use
a single convolutional encoder whose output is used for both the actor and
critic networks. For this work, we use soft-actor critic (SAC) [14], where the
convolutional encoder is made of four convolutional layers (see Fig. 1). To
achieve higher performance, SAC can be improved by performing data aug-
mentation during training. Following [6], we perform random translations on
the state and next state images when calculating the actor and critic losses; we
will refer to this approach as RAD-SAC in the figures below. For additional
details on actor and critic networks or training details, see [6].
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3.2 Domains

Figure 2: Tasks from DMControl Suite:
reacher-easy, cheetah-run, finger-spin.

We run experiments on several tasks from the DeepMind Control Suite [15].
To perform data augmentation in the form of random translations, the en-
vironment images are rendered at 100× 100 pixels and crops are randomly
sampled at a size of 84×84 pixels. To provide full information to the agent,
the agent recieves three stacked frames as an observation; augmentations
are consistent across the frames. For additional details about the environ-
ments, see [6].

3.3 Metric

The most obvious explanation for why random-shifts impact learning of a convolutional encoder is that the augmen-
tations lead to better shift-equivariance. Thus, we will measure how shift-equivariance is affected by augmentation. A
network is shift-equivariant if shifting the input image results in a similarly shifted output feature map. From [12], the
metric of shift-equivariance of a convolutional neural network, fθ is calculated as:

Mequ(fθ) = Ex∼X

[
sim

(
fθ(T (x)), T ′(fθ(x))

)]
(1)

where sim is the cosine similarity function, x ∼ X is an image input sampled from training distribution, and T is an op-
erator that translates images in pixel space, and T ′ is an equivalent operator in output pixel space (i.e. if fθ downsamples
the image by a factor of 2, then T ′ will translate by half the magnitude of T ). The shift-invariance of a neural network
can be calculated by setting T ′ to the identity operator in Eqn. 1.

3.4 RAD-SAC vs. SAC

Conventional wisdom would suggest that the convolutional encoder of RAD-SAC is shift-equivariant so random-
translations should have little impact on the convolutional features learned. As pointed out in Section 2, downsampling
operations can lower shift-equivariance. We investigate the possible influence of the downsampling (which occurs in
first convolutional layer via striding) in Figure 3. We compare the performance of RAD-SAC to a method where random
translation occurs after the strided convolutional layer (‘RAD-SAC after conv1’) and to a method where SAC uses an
anti-aliased downsampling operation from [12] instead of striding (‘SAC + blurpool’). We observe minimal difference
in performance when using an anti-aliasing downsampler, suggesting that achieving better shift-equivariance is not the
driving mechanism behind data-augmentation. This is supported by the fact that applying random translations before
or after the strided convolution layer has minimal impact on performance. This form of ‘representational robustness’
was noted in [6], however it was also observed for other forms of augmentation.

Figure 3: Learning curves on several DMControl tasks.

Figure 4: Measures computed using Eqn. 1 on random
translations of 1 to 4 pixels. The network is measured after
each layer so the value of ‘conv3’ means the equivariance
up to, and including, the third convolutional layer.

We show the measures of equivariance and invariance of the
encoders after training on reacher-easy environment (Fig.
4). At the final convolutional layer (conv4), we observe a
marked difference in shift-equivariance between the meth-
ods that used augmentation and those that did not. This
suggests that augmentation does impact shift-equivariance,
although the equivariance does not seem to be introduced
by the downsampling operation. Perhaps more importantly,
we observe that the methods with data-augmentation have
much higher shift-invariance at the final convolutional layer.
Invariance to shifts is desirable because the output of the en-
coder is flattened and processed by a linear layer.
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3.5 RAD as a Regularizer

Figure 5: Spatial attention maps of
final convolutional layer.

The results so far suggest that augmenting with random translations causes the
learned feature maps to be more shift-equivariant and shift-invariant. This may
seem counter-intuitive; however, it is possible when the output of the network is
spatially-continuous. By inspecting the learned feature maps after the final convo-
lution (Figure 5), we find that RAD-SAC generates feature maps with higher spatial
continuity compared to when data augmentation is not used. Next, we test if this
spatial continuity can be achieved via other means: applying dropout (p = 0.9) after
final convolutional layer (‘SAC+dropout’), applying gaussian blur (σ = 2.) to final
feature map (‘SAC+blur’), and adding regularization loss to enforce local spatial
continuity (‘SAC+regularizer’). The results (Fig. 6) show that dropout and blurring
can achieve similar to RAD-SAC for some, but not all, environments. Thus, form-
ing robust representations does not necessarily lead to success on the reinforcement
learning task; increasing spatial continuity will lower how precise the network is
about the spatial position of features.

Figure 6: Comparing RAD-SAC to using traditional regularization techniques.

4 Conclusion

Figure 7: Shift-equivariance for en-
coders with different number of layers

In this work, we investigated the effects of random translation augmentations
on image-based RL for continuous control tasks. We find that augmentation
of this sort results in encoders that have higher shift-equivariance and shift-
invariance (i.e. have spatial consistency). We are unable to reliably achieve per-
formance of RAD-SAC using regularization techniques alone. This suggests that
we do not completely understand how data augmentation impacts the learning
process. One possible direction to explore is inspired by the data from Fig. 7.
It shows the shift-equivariance of two SAC agents trained on reacher-easy, one
with 4 convolutional layers and the other with 5 convolutional layers. The shift-
equivariance decreases based how far the layer is from the output. We hypoth-
esize that the encoder learns to form non-equivariant representations that are
more interpretable to the downstream linear layers. Designing a better interface
between convolutional and linear layers may result in faster learning with less
need for data augmentation.
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